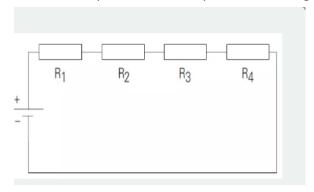


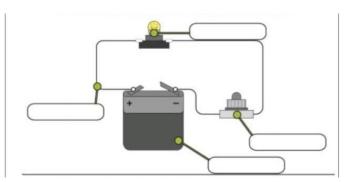
Este plan de nivelación es para fin de año y se debe presentar en las fechas dadas por la institución, en un trabajo de manera ordenada y a mano, tendrá un valor del 20% y es requisito para la sustentación que corresponde a una evaluación escrita.


- 1. La expresión 1800 cm corresponde a
- a) 1.8×10^3
- b) 1.8×10^2
- c) 1.8×10^{-2}
- d) 1.8×10^{0}
- 2. El número 6,2x 10⁻⁴ en notación decimal corresponde a
- a) 0,0000062
- b) 0,00062
- c) 62000
- d) 0,000062
- 3. Por factor de conversión la expresión 15000segundos a horas es equivalente a
- A) 4,16 h
- B) 8,5 h
- C) 12,5 h
- D) 6,7 h
- 4. Al efectuar la operación aplicando propiedades de notación científica $8,5x10^{-6} + 1,87x10^{-7}$ nos da como resultado
- A) 9.37×10^{-7}
- B) 8,68x10⁻⁶
- C) $7,68x10^{-6}$
- D) $2,12x10^{-7}$
- 5. Realizar la siguiente división aplicando propiedades en notación científica 0,00027÷300
- A) $9x10^{-7}$
- B) 2.7×10^{-8}
- C) $2.7x10^{-4}$
- **D)** $9x10^{-6}$
- **6.** Cuál es el número menor de las siguientes expresiones:
- a) 7,5x10⁻²
- b) 7,5x10⁻⁵
- C) 7,5x10⁻¹
- d) 7,5x10⁻⁴
- 7. Realiza la operación aplicando propiedades de notación científica $(5,3x10^{-5})x(7x10^8)$
- A) 1,03x10¹²
- B) 1,17x10²
- C) 1,17x10⁴
- D) 3,71x10²

- 8) Un cohete al ser lanzado alcanza una altura de 250 km. Por factor de conversión ¿A qué distancia equivale esta distancia en pies? Por factor de conversión la expresión
- A) 820210ft
- B) 8202,10 ft
- C) 11482, 93 ft
- D) 1148293, 96 ft
- 9) Expresar por factor de conversión 90 millas a metros
- A) 13545 m
- B) 144810m
- C) 14 890,7 m
- D) 12944, 40m
- 10. Convertir por factor de conversión 320 metros a yardas, Por factor de conversión
- A) 349,9 yardas
- B) 1,3 yarda
- C) 900,3 yardas
- D) 109,3 yardas
- 11) Convertir 35 in a ft
- A) 2,91ft
- B) 2,08 ft
- C) 6,7 ft
- D) 2,9 ft
- 12) Convertir 145 onzas a libras
- A) 10,2 lb
- B) 12,4 lb
- C) 9,06 lb
- D) 6,7lb
- **13)** . Al Convertir 0,12 m/s a ft/ h ft (pies) Por factor de conversión la expresión corresponde a
- A) 3456,2 ft/h
- B) 1417p, 32 ft/h
- C) 34568,23 ft/h
- D) 1256,7 ft/h
- 14. 28 yd/h a m/s, Por factor de conversión la expresión
- A) 2.5 m/s
- B) $3,45 \times 10^{-2} \text{m/s}$
- C) 1,06 m/s
- D) $7,11x10^{-3}$ m/s
- 15. Calcular la distancia "r" que separa dos partículas cargadas con 3x10⁻²C cada una, sabiendo que la fuerza de interacción entre ambas es de 0,9N
- A) 2500N
- B) 3000N
- C) 2800N
- D) 1560N

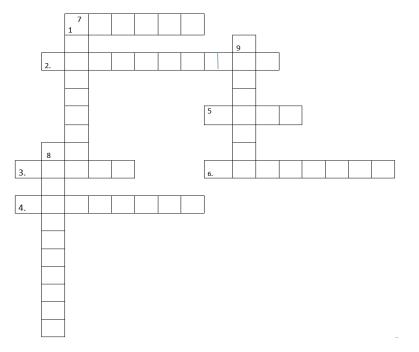
- 16. Expresar 28 km/h a m/s, Por factor de conversión la expresión
- A) 7.7 m/s
- B) 6.5 m/s
- C) 9,06 m/s
- D) 4,12 m/s
- 17. Una carga eléctrica de 5nC, se encuentran en el aire a 30 cm de otra carga. La magnitud de la fuerza con la cual se rechazan es de 0,6 N. ¿Cuánto vale la carga desconocida?
 - A) $2.5 \times 10^{-6} \text{C}$
 - B) 1,2x10⁻³ C
 - C) 3.2×10^{-6} C
 - D) $2,2x10^{-3}$ C
- 18. Expresar 15,6 km/min² a cm/s², Por factor de conversión la expresión
- A) $433,33 \text{ cm/s}^2$
- B) 0.433 cm/s^2
- C) $4,33 \text{ cm/s}^2$
- D) $43,33 \text{ cm/s}^2$
- 19. Al Convertir 25 ft/s a in/h in (pulgada), Por factor de conversión,
- A) 2,8 x 10 ⁵ in/h
- B) 2,5 x 10⁻³ in/h
- C) 1,08 x 10 6 in/h
- D) $5.6 \times 10^{3} \text{ in/h}$
- 20. Calcular la magnitud de la fuerza Eléctrica entre dos cargas cuyos valores son: q_1 = 2,5 mC, q_2 = 5 mC, al estar separadas en el vacío por una distancia de 40 cm.
 - A) 567890 N
 - B) 703125N
 - C) 931254N
 - D) 89165N
- 21. Calcular la carga de dos partículas igualmente cargadas, que se repelen con una fuerza de 0,1 N, cuando están separadas por una distancia de 50 cm en el vacío.
 - A) $1,67x10^{-6}C$
 - B) $2,2x10^{-6}$ C
 - C) $3,2x10^{-6}$ C
 - D) 5,2x10⁻⁶ C
- 22. Una carga de 3nC se encuentra en el aire a 0,15 m de otra carga de 4nc. Calcular: ¿Cuál es la fuerza eléctrica entre ellas?
 - A) 4,8x10⁻⁶ N
 - B) 7,3 x10⁻⁶ N

- C) $9.1 \times 10^{-6} \text{ N}$
- D) 8,16 x10⁻⁶ N
- 23. Que tipo de circuito representa la imagen


- A) Circuito Serie
- B) Circuito Paralelo
- C) Circuito Mixto
- D) Circuito onh
- 24. Unidad de medida de la corriente eléctrica
- A) Ohm
- B) Watt
- C) Ampere
- D) Volt
- 25. En un circuito paralelo hace referencia a
- A) Posee varios caminos para la corriente eléctrica
- B) Posee un único camino para la corriente eléctrica
- C) Las dos anteriores
- D) Ninguna de las anteriores
- 26. Unidad de medida de la resistencia eléctrica
- A) Ohm
- B) Volt
- C) Watt
- D) Ampere
- 27. Unidad de medida de la potencia eléctrica
- A) Ampere
- B) Volt
- C) Ohm
- D) Watt
- 28. Que tipo de circuito representa esta imagen
- A) Circuito Serie
- B) Circuito Paralelo
- C) Circuito Mixto
- D) circuito ohm

- 29. Partículas que se mueven para formar la corriente eléctrica
- A) Electrones
- B) Neutrones
- C) Protones
- D) Voltios

- 30. Unidad de medida del voltaje
- A) Ampere
- B) Ohm
- C) Volt
- D) Watt
- 31. En un circuito serie hace referencia a:
- A) Posee un único camino para la corriente eléctrica
- B) Posee varios caminos para la corriente eléctrica
- C) A) Las dos
- D) Ninguna de las anteriores
- 32. El voltaje final en este circuito es
- A) 1,5 V
- B) 4,5V
- C) 3,0V
- 33. Cierto material está conectado a un voltaje de 240V y una intensidad de corriente de 0,1 A. Si se cumple la ley de Ohm, ¿cuál es la resistencia eléctrica del material?
- Α) 0,0041 Ω
- B) 240 **Ω**
- C) 2 400 Ω
- D) 240,1 Ω
- 34. Cierta fuente eléctrica está suministrando una corriente de 3 A a un aparato con una resistencia de 80Ω . Si se cumple la ley de Ohm, ¿cuál es la diferencia de potencial generada por la batería?
- A) 26,7V
- B) 77V
- C) 150 V
- D) 240V
- 35. Determina la intensidad de corriente que circula por una resistencia de 25 Ω al recibir una diferencia de potencial de 100 V
- A) 2 A
- B) 4A
- C) 1,5A
- D) 5,8 A
- 36. Completa


37. Resuelve el siguiente crucigrama: (equivale al 20% de la evaluación)

Horizontales:

- 1. Material que conduce bien la corriente eléctrica
- 2. Elemento de un circuito eléctrico que permite controlar cuando circula la corriente y cuando no.
- 3. Modo de conexión de un circuito en que se suman las intensidades
- 4. Material que no conduce la corriente eléctrica.
- 5. Tipo de generador que se utiliza como fuente de electricidad.
- 6. Modo de conexión de un circuito en que se suman las tensiones

VERTICALES

- 7. Material que permite el paso de los electrones a través del mismo
- 8. Elemento que se opone al paso de la corriente eléctrica
- 9. Dispositivo que produce luz

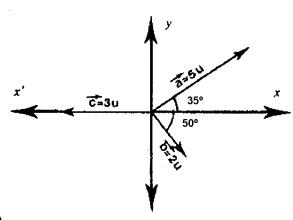
NOMBRES:	GRADO:

HORIZONTAL

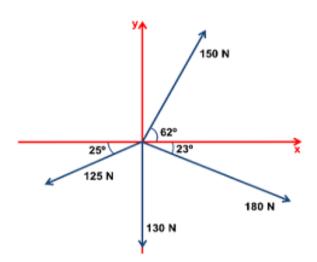
- 3. Región del espacio donde se manifiestan fuerzas a distancia.
- 4. Fenómeno por el que variaciones en un campo generan movimiento de electrones en un conductor.
- 6. Teoría que unifica fenómenos eléctricos y magnéticos mediante campos dinámicos.
- 8. Conductor enrollado que genera campo magnético cuando la corriente pasa.
- 10. Es aquella que genera electricidad, a partir del uso del agua como fuerza motriz
- 12. Objetos que son fácilmente atraídos por los imanes
- 14. Aplicación del electroimán

VERTICAL

- 1. Conjunto de fenómenos que describe la interacción entre imanes y materiales que responden a campos.
- 2. Objeto con un campo magnético que puede atraer metales.
- 5. Movimiento de cargas eléctricas a través de un conductor.
- 7. La magnetita pertenece a este tipo de imanes
- 9. extremos de un imán
- 11. Ocurre cuando se enfrentan los polos norte de 2 imanes, o los polos sur
- 13. Instrumento que indica la dirección, utilizando una aguja imantada que señala el norte magnético
- 15. Es un tipo de generador de corriente eléctrica (inducida) que se encuentra, por ejemplo en todas las centrales eléctricas



13	
\vdash	
28	


INSTITUCIÓN EDUCATIVA MUNICIPAL NACIONAL MAG. LEONOR FIGUEROA HERNANDEZ NIVELACION GRADO NOVENO EVALUACIÓN DE FISICA

- 1. Dibujar y aplica el teorema de Pitágoras, para calcular la magnitud de las siguientes sumas de vectores:
- A. a + b
- B. c + d
- C. b+c
- a= 6u en dirección al este
- b= <u>7u</u> en dirección norte
- c= 8u; respecto al semeje negativo de las x
- d= 5u; respecto al semieje negativo de las y
- 2. Dibujar los siguientes vectores en un plano cartesiano diferente y hallar las componentes rectangulares
 - a) A=5cm, 70° respecto al semieje positivo de las x
 - b) B= 10 cm, 30° al oeste del norte
 - c) C=7cm, 70° al sur del este
- 3. Sumar los siguientes vectores:

a)

b)

